
f

Recent Advances in Computational Structural
Reliability Analysis Methods

Ben H. Thacker, Y.-T. (Justin) Wu, Harry R. Millwater,
Tony Y. Tomg, and David S. Riha

Southwest Research Institute
San Antonio, Texas

185



PAGE INTENTIONALLYBLANK



7

\

INTRODUCTION

The goal of structural reliability analysis is to determine the probabili_ that the structure will
adequately perform its intended function when operating under the given envtronmental conditions. Thus,
the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure
are usually possible, achievement of this goal is a formidable task, especially for large, complex structural
systems. The traditional (deterministic) design methodology attempts to assure reliability by the
application of safety factors and conservative assumptions. However, the safety factor approach lacks a
quantitative basis in that the level of reliability is never known and usually results in overly conservative
designs because of compounding conservatisms. Furthermore, problem parameters that control the
reliability are not identified, nor their importance evaluated.

This paper presents a summary of recent advances in computational structural reliability
assessment. A significant level of activity in the research and development community has been seen
recently, much of which has been directed towards the prediction of failure probabilities for single mode
failures. The focus of this paper is to present some early results and demonstrations of advanced reliability
methods applied to structural system problems. This includes structures that can fail as a result of multiple
component failures (e.g., a redundant truss), or structural components that may fail due to multiple
interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these
results, some observations and recommendations are made with regard to future research needs.
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PROBABILISTIC STRUCTURAL ANALYSIS METHODS (PSAM) PROGRAM

The methodologies presented in this paper have been developed by the Southwest Research
Institute (SwRI) under sponsorship from the NASA Probabilistic Structural Analysis Methods (PSAM)
Program [1,2]. The objective of the NASA/PSAM program is to develop probabilistic structural analysis
methods for critical space shuttle main engine (SSME) components such as turbine blades, transfer ducts,
piping systems, and liquid oxygen posts. These components are considered critical because of the severe
consequence of failure. A major accomplishment of the PSAM program is the development of the
NESSUS computer program, which integrates advanced reliability methods with general structural
analysis capabilities. Rocketdyne (Rockwell Corporation) has and is currently applying NESSUS to
critical SSME components [3].

The methodologies developed by PSAM are applicable to a wide range of applications. Under
several other projects, SwRI is applying PSAM technology to geomechanics, nuclear waste,
rotordynamics, industrial design and optimization, biomechanics, and numerous other structural and
mechanical reliability problems [4, 5, 6].

• Ten-Year Research and Development Program

- Phase 1: Probabilistic Structural Response Analyses of

the Space Shuttle Main Engine Components (1984-1989)

- Phase 2: Structural System Risk Assessment, Qualification,

Certification, and Health Monitoring (1990-)

• Simulate UncertaintyNariability in Loads, Material Properties,

Geometries

• Computer Code NESSUS Integrates Reliability Methods with

Structural Analysis Methods (FEM, BEM)

• PSAM Methodology and Code are General Structural Risk

Assessment and Reliability Design Tools

Prime Contractor: Southwest Research Institute

Project Sponsor: NASA Lewis Research Center



SUMMARY OF NESSUS 6.0 CAPABILITIES

The probabilistic structural analysis methods used in this paper are implemented in the NESSUS tm
probabilistic computer program [7]. NESSUS couples numerous advanced probabilistic algorithms with
general-purpose structural analysis capabilities to provide a very efficient means of computing probabilistic
results for complex applications. Thus, the key feature of NESSUS is its ability to establish the
cumulative distribution function (CDF) for complex structures with a minimum number of response re-
solutions. Figure 1 summarizes the capabilities in NESSUS Version 6.0.

Random Variables
Loads

- Forces
- Pressures
- Temperatures
- Vibrations (PSD)

Material properties
- Moduli
- Poisson's ratio
- Yield stress
- Hardening parameters
- Material orientation

Geometry
User-defined

Probabilistic Methods

Fast Probability Analysis
- Advanced Mean-Value
- First and Second-Order
- Fast Convolution

Sampling
- Standard Monte Carlo
- Latin Hypercube
- Adaptive importance

Probabilistic Fault Tree

Pro[babilityof/

Creep Rupture

1.o

3603D SolidElements o
810Nodes,2100DOF Service Life

Probabilistic Results

- Fullprobabilitydistribution
- Componentreliability
- System/multi-failure-modesrel.
- Probabilisticsensitivities
- Probability-baseddsk/cost

Performance Functions
. Structuralresponses:

stress,strain,disp.,freq.,etc.
- Fatigueand fracturelife
- Creeprupturelife
- User-definedsubroutines
- Externalanalysisprograms
(requirescustom-madeinterface)

Analysis Types
Static
Transient dynamics
Buckling
Vibrations
Nonlinearities

- Plasticity
- Large displacement

Element Library
Beam
Plate
Plane strain
Plane stress
Axisymmetric
3D solid
Enhanced solids

Operating Systems
Mainframes
- CRAY
- VAX

Workstations
- HP
- SUN
- APOLLO

Figure 1. Summary of NESSUS Version 6.0 Capabilities.

189



EFFICIENT RELIABILITY ANALYSIS BASED ON MOST PROBABLE POINT (MPP)

One of the challenges in computational structural reliability is the development of efficient and
accurate probabilistic analysis algorithms for analyzing, structures where the computations of the
performance and its sensitivities are very time-consurnmg. Recently, probabilistic methods based on the
limit state approach have been developed and successfully integrated with finite element and boundary
element methods. In these methods, the primary computational effort is typically spent on locating the

most probable point (MPP) for a limit state function, Z = zi, as illustrated in Fig. 2. Once the MPP is
identified, the probability of failure can be estimated. Several approaches are available to search for the
MPP. One efficient method, developed and implemented in NESSUS, is the advanced mean value method
(AMV), which has been shown to be extremely efficient [8]. One of the limitations of the limit state
approach is that the probability estimate is based on a low-order polynomial approximation. The adaptive
importance sampling (AIS) method provides a quick way to check the AMV solution by sampling in the

most likely failure region [9].

• Input Variables Defined
Using Probability
Distributions

• Fast Probability Integration
Estimates MPP on Response
Surface

• Advanced Mean Value

(AMV+) Iteration Computes
Converged MPP and
Estimates Probability of
Failure (pf)

• Adaptive Importance

Joint Prob. Density f_ (X)

Sampling (AIS) Can be Used /__/"T'_

to Check pf Calculation / _ /z = z2

fl z=z>z z ,, fl 1 =Z>Z I

Figure 2. Joint Density Function and Most Probable Point (MPP) for Two Random Variables.
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RELIABILITY ANALYSIS USING COMPONENT STRESS AND
MATERIAL RESISTANCE CURVES

The example shown in Fig. 3 considers a circular disk subjected to two equal and opposite point
loads. The disk is assumed to fail when the equivalent stress at the center of the disk exceeds the material
yield stress, which is a function of temperature. Random variables considered include the loading,
thickness of the disk, and the temperature. A simple relationship is used to describe the degradation of
yield stress as a function of temperature.

Using NESSUS, the distribution functions for stress and strength were computed. The reliability
analysis, also performed with NESSUS, then computed the probability of strength being less than stress,
which was considered failure. The probabilistic analysis was verified using both AMV and Monte Carlo
with the circular disk modeled in closed-form and with finite elements.

Component Stress
Maximum von

Mises Stress in /

Disk Under Load ( I-_ J

Thin Disk \ /

Modeled Using

Finite Elements

0.00025

0.0002

z,
,-, 0.00015

J3

2
n 1E-04

5E-05

0
10

Material Resistance

Yield Stress Modeled as

Function of Thermal Cycles

Probability of Failure Computed Using NESSUS

Strength Variable

Yield Stress
Mean=35.4 ksi f \

Std=l.Sksl / '_

Stress Variable T _,

EquivaWentSt,ess_ ] \
Mean=23,0 ksi /_ _, _' It

. i . • _ __=

15 20 25 30 35 40

Stress (ksi)

p f = 0.00291

Figure 3. Component Reliability Analysis Demonstrated for Simple Example.
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ROCKET ENGINE TURBINES SUBJECT TO SEVERE CONDITIONS

Representative of a more real world component reliability problem, a model of an SSME
component was considered. The high-pressure fuel turbopump blade, shown in Fig. 4, represents a
critical component in the SSME engine in that failure of a blade can result in loss of the complete engine.
Stringent limitations on size and weight coupled with the hot hy.drogen enriched steam turbine fluid and the
cold hydrogen cooling fluid results in a very severe thermal envtronment. Probabilistic methods are
ideally suited for the SSME turbine blade analysis where the lack of available local measurements results in
significant uncertainty in loads such as thermal response. The lack of data is attributed to the difficulty in
making measurements in the extreme environments and operating conditions within the engine.

Severe Design Requirements

Comparatively Short but
Severe Service Life

STOCHASTIC
IHERMOMECHANICAL

STOCHASTIC LOADS

MATERIAL [- Strict Limitations on Size and p.O_E.,,ES .ES_O.SEDY"AM"_
Weight

- High Energy Content of Fluids

- UNCER'fAIN
STRUCTURAL

SHAPE

High Specific Work Output

Rapid Start and Short Run
Duration

Severe Thermal Shock
Conditions

- High Stage Loading and Stress

Blades Prone to High Cycle
Fatigue Cracking

Operating Stresses and Deflections
Must be Closely Controlled

Figure 4. Space Shuttle Main Engine (SSME) Turbine Blade.
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TURBINE BLADE RANDOM VARIABLE INPUT

Several methods exist for modeling uncertainty, such as probability distributions, fuzzy sets,
convex models, bounding, etc. The probability distribution approach is used here to model each
engineering variable in terms of its statistical parameters, namely its mean, standard deviation and
distribution type. The standard deviation characterizes the magnitude of the scatter in the data and the
distribution describes how the scatter is distributed about the mean. The variables listed in Table 1 were
used for the demonstration analyses presented in this paper.

Table 1. Random Variable Definitions Used for the Turbine Blade Analysis.

Mean Standard
Variable Symbol Value Deviation Distribution

Crystal Orientation
about z 0z +3* 3.9* Normal

Crystal Orientation
about y

r ,.,, ,,,.,,,.,-.

Crystal Orientation
about x

0y

0x

-2* 3.9" Normal

+5* 3.9 ° Normal

Youngls Modulus E 18.38E6 psi 0.46E6 psi Normal
Poisson's Ratio v 0.386 .00965 Normal

Shear Modulus G 18.63E6 psi .47E6 psi Normal

Material Parameter Bo 86.0 0.086 Normal

0.805E - 3 0.493E - 5

Density p Ibm/in s Ibm/in s Normal
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TURBINE BLADE CREEP RUPTURE RELIABILITY ANALYSIS

A component reliability analysis of the turbine blade considering failur by creep rupture was
performed. The turbine blade is modeled using the finite element model shown in Fig. 5. The blade is
composed of a single crystal material described by three elastic constants, and three orientation angles. In
the analysis, the blade is rotating at a constant speed and operating at a constant temperature. The failure
mode being studied is creep rupture due to operation of the blade under elevated temperature. The

temperature, stress and rupture life are related using a Larson-Miller relation, given by P = T (C + logt )
where P is the Larson-Miller parameter, T is the absolute temperature; and t is the rupture life. More
detail of this analysis is given in Ref. [10].

Possibly one of the most valuable products of the probabilistic analysis are the probabilistic
sensitivity factors (PSF), shown by the bar chart in Fig. 5. The PSFs provide an important ranking of
the problem variables with respect to the total uncertainty in the response. Therefore, since the statistics
of the input variables are contained in these sensitivity data, the PSF data provide a more realistic and
useful ranking of the variables.

, _'99.997

___L L°ads: "E

Pressure --_ 97.725
.m

Thermal

Centrifugal "5 50.0

"_ 2.275
I d_

I o
o. 0.003

• Turbine Blade Operating

at High Speed in High

Temperature Environment

• Failure by Creep Rupture

Possible if Operated Past
Critical Time

• AMV+ Procedure Used to

Assess Reliability

1.0

0

._> 0.8

t,.-
0.6

60

._t2

-_- 0.4

,o 0.2
D_

0.0

............ _\\\'_

........... I_\\x\\\ ............

N1N
Thota Z Thota Y Thela X

t = 75 hrs

° ....................................

E nu G BO

Random Variable

Figure 5. Creep Rupture Reliability Analysis of the Turbine Blade.
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PROBABILITY OF EXCEEDING 60 KSI EFFECTIVE STRESS

Anothercomponent reliability analysis of the turbine blade considers stress exceedance. Figure 6
shows the probability of the von Mises stress exceeding 60 ksi. The plot was obtained by computing the
probability of exceeding 60 ksi stress at each node using the NESSUS program and plotting the results
using a general-purpose finite element graphics program.

The probabilistic information was obtained from a mean-based sensitivity analysis and must
therefore be interpreted accordingly. The contours indicate where the high failure probability regions axe

located and where more refined analyses should be directed. It should be noted that the high probability
regions may not be the same as the high stress regions from a deterministic analysis. This is because the
standard deviation in stress varies from location to location in the mesh. For example, although the mean
stress at some location (A) may be lower than the mean stress at some other location (B), the standard

deviation may be higher at A than at B (i.e., more variation in stress). Thus, the probability of exceeding
a certain stress level could be higher at A than at B even though the mean stress is lower at A than at B.

I

Figure 6. Probability of Exceeding 60 ksi Effective Stress.
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NESSUS PROBABILISTIC FAULT TREE ANALYSIS METHODOLOGY

What dictates failure in real structures, as previously described, will usually be a sequence or

interaction of individual component failure modes. A popular method for modeling, system failure as a
function of component failures is with a fault tree. A fault tree provides a systematic way to deal with
multiple, possibly complicated, failure paths composed of multiple components or multiple failure modes
(bottom events). In traditional fault tree analysis, probabilities are assigned to the bottom events, and
propagated through gates (AND, OR, etc.). For typical structural reliability analysis problems, however,
the failure events will often times be correlated due to common problem variables. To account for this

dependency, it is necessary that the limit state functions, rather than simply the probabilities, be used to
define the bottom events. In addition, conditional limit state functions must be established that represent

updated structural system configurations as a result of sequential failures (for modeling redundancy or
progressive fracture for example). Figure 7 shows how failure modes and sequential failure can be
modeled using a fault tree. Sequential failures can be modeled using the PRIORITY AND gate. A
sequence of limit state functions corresponding to a sequence of updated structural configurations with
load redistribution, must be generated during the analysis. This fault tree methodology has been

developed and is implemented in NESSUS [9].

:lel |

System Failure I

/_ Priority

_ !Sequential)

Structure/load update

t xj

gl =0 / g2 =0 g413=0

t

03=0

X i

• Fault tree used for modeling multiple failure modes and paths

• Bottom events modeled using FEM model, approximate response
surface, analytical equation

• Dependencies between bottom events accounted for

• Reliability calculated by adaptive importance sampling

Figure 7. NESSUS Probabilistic Fault Tree Analysis Methodology.
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NESSUS SYSTEM RELIABILITY ANALYSIS EXAMPLE

Figure 8 shows a simple fault tree for a simple structural component. The hypothetical structure
has three failure modes: vibration, stress and fracture. The structure is considered failed if any of the
three failure conditions are satisfied. This is represented with the "OR" gate. Failure is def'med as the fn'st
natural frequency being within a certain range, the stress exceeding a stress limit, and the mode I stress
intensity factor exceeding the fracture toughness. For vibration, a two-sided limit is used to def'me failure
and is represented in terms of an "AND" gate. As indicated, three of the bottom events are modeled
analytically and one is given by finite element model.

Probability of system failure was obtained using several sampling methods; conventional Monte
Carlo and adaptive importance sampling (AIS) using the exact limit state functions, and AIS on an
approximate limit state. The approximate limit state consists of a closed-form approximation to the f'mite
element model computed using the AMV+ procedure described earlier. The results indicate that the AIS
method achieved results comparable to those obtained using Monte Carlo at 1/78 the computational cost.
As also indicated, good agreement is obtained using the approximate limit state also, with further
reductions in calculation cost. This example indicates the practical application of structural system

reliability using a fault tree approach with advanced probabilistic methods.

PROBABILISTIC FAULT TREE

11 SYSTEM RANDOM VARIABLES: _ FAILURE MODES:

• MATERIAL PARAMETERS _O • VIBRATION

• GEOMETRY • STRESS
• LOADING a • FRACTURE

AND°J....

VIBRATION FREQ VIBRATION FREQ STRESS FRACTURE

g, =f_-,_,m, --f 0%=/--f._=,.= g3= a,... -- a,, g, = KIc- K

SYSTEM RELIABILITY RESULTS

(< 20% ERROR, 95% CONFIDENCE)

P/= Prob.l{{g, < O)f'_2 < 0)} u(g 3 < O) t.J(g4 < 0)l

Syslem CPU Time (sec)

Method PI Samples* HP 700 Sedes

Monte Cado 0.01170 10,000 54,800
(117 Failures)

AIS Exact" 0.01176 97 706

(41 Failures)

AIS Approx."" 0.01183 19

Four bottom events per syslem sample not
including initial AMV+ function evaluations

'" Adaptive Importance Sampling of exacl lunclions

• •, Adaptive Importance Sampling of approximale lunclions

Figure 8. NESSUS System Reliability Analysis Example.
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SYSTEM RELIABILITY ANALYSIS OF THE TURBINE BLADE

To demonstrate the computational system reliability methodology on a realistic-sized problem, the

turbine blade was analyzed probabilistically considering thr_ modes of failure: frequency, yield, _d, ,.

rupture. The procedure employing approximate limit states for the component mooes is recommenaea mr
this level of deterministic modeling. Each mode of failure is first analyzed using the AMV+ procedure to

establish the approximate limit state. The computational effort required for this step is given in each
bottom event box in Fig. 9. Next, the system failure is computed using AIS. This procedure is automated
in NESSUS. This example demonstrates that system reliability assessment is now possible for complex

structural systems.

I
Vlbration
Pf = 0.0053

CPU = 40 min

I Structural Failure ]

+
I

[Vibration

[Pf = 0
ICPU = 40 min

Yield

Pf = 0.00233
CPU = 24 min

g = flow- f g = f - fup g = Slim" S

FEM Model Used for

All Bottom Events

1456 3D Solid Elements

2454 Nodes, 5946 DOF

Creep

Pf= 0.00978
CPU = 36 rain

g=P1 "P2

Probability of Structural Failure: 0.01711

Total CPU Time Required: 2,5 hours

cpu Times for HP Series 750 Workstation (64Mb RAM)

Figure 9. System Reliability Analysis of the Turbine Blade.
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SYSTEM RELIABILITY ANALYSIS IDENTIFIES
CRITICAL FAILURE MODES AND RANDOM VARIABLES

As in the component reliability analysis procedure described earlier, the system reliability analysis
also provides a probabilistic ranking of the inputs. The inputs for the system analysis are the component
failure modes, whereas the inputs for the component analysis are the problem variables. Thus, not only
are the problem variables ranked by importance, but the dominate failure modes are also identified. As

shown in Fig. 10, for example, the creep rapture mode is seen to conlribute the most to the overall system
probability. The bar chart on the fight shows the problem variable ranking for each failure mode. This
type of information is required to establish a reliability based design procedure.
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Figure 10. Dominate Failure Modes and Problem Variables are Identified

in the System Reliability Analysis.

199



RELIABILITY ANALYSIS AND DESIGN PROCEDURE

How the probabilisdc methodologies presented here would fit into a typical design procedure is
shown in Fig. 11. The shadowed boxes indicate the position of the component and system reliability

analyses in the overall design cycle. The first step in the process is to identify all of the physical variables
and sources of uncertainty. How these physical variables affect the problem variables comprises the next

step. For example, in the SSME, the fuel mixture ratio (a physical variable) effect s the pressure, thermal,
and centrifugal loading (problem variables) on the turbine blade. In the next steps, the individual failure
modes are identified and analyzed both deterministically and probabilisticaUy. Next, the overall system
failure and dominate failure modes and problem variables are identified, which are used in subsequent

steps to alter the design subject to the design requirements (e.g., cost, weight, reliability).

Random variables

xi (i = 1, n)

Design Adjustment

- Critical parameters

- Critical failure modes

- Most likely conditions

- Improved design

r

v

[USER[

Design Variables
Loads, Material Properties,

Geometry, ...

Component

Performance Analysis

Fatigue, Creep, Fracture,

Vibration, Delamination,

Corrosion, ...

Component

Reliability Analysis

Adv. Mean Value (AMV)

Adap. importance samp.

Std. Monte Carlo

i Stress .._,Strength

1 t _ Prob. Sensitivityo
Temp. rpm E radius

t

System Performance
Multi-Components/Modes

_ Fault-tree

System Rel. Analysis - Probability bounding

- Adap. importance samp.

• Risk, cost!warranty

• Optimal design

• Rel. design sensitivity

• Design certification

• Reliability testing plan
• Inspection schedule

Figure 11. Component and System Reliability Analysis Integrated Into The Design Procedure.
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STATE-OF-THE-ART TECHNOLOGY IN COMPUTATIONAL
STRUCTURAL RELIABILITY ANALYSIS

It must be recognized that probabilistic structural analysis methods are not as well developed as
deterministic design methodologies. Computational tools, such as those described in this paper, are just

recently becoming available and have only been applied to limited numbers of problems. Moreover,
training and experience are required to conduct a probabilistic analysis, neither of which are easily acquired
at the present time. Consequently, before probabilistic methods can be successfully integrated into the
current design cycle, several challenges, such as those listed in Fig. 12, must be overcome.

What is Possible Now:

Moderately Detailed Component Reliability Analyses (10,000 DOF)

Simplified System Reliability Analyses (< 5 Modes)

- Simplified Integrated Risk/Reliability Analyses

Current Challenges:

- Awareness, Comprehension and Acceptance

- Identification of Uncertainties or Randomness

- Probabilistic Data Bases

- Robustness and Validation of Recently Developed Computational Tools

Figure 12. State-of-The-Art In Computational Structural Reliability Analysis.
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APPLICATIONS WILL SUPPORT (DRIVE) FUTURE
RESEARCH AND DEVELOPMENT

The requirement for a probabilistic approach is dictated by need, and current application needs will

certainly impact the future research directions. A few of these application areas are listed in Fig. 13. One
of _e more promising areas is probabilistic fracture mechanics. This is because fracture usually results in
sudden catastrophic failure of the system. Both progressive fracture and multi-site damage are of current
concern and will require probabilistic methods.

• Probabilistic Progressive
Fracture

• Multi-Site Damage (Linkup)

• Parallel Processing

• Certification

• Health Monitoring

• Multi-Disciplinary Reliability
Assessment

• Optimum Inspection Scheduling
and Retirement

• Human/Modeling Error

Figure 13. Some Current Application Areas That Will Require Probabilistic Methods.
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